Aplicação do processo de floculação combinado ao processo foto-fenton para o tratamento do efluente proveniente da lavagem de um reator utilizado na produção do inseticida Fipronil
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
BR Programa de Pós-graduação em Química Ciências Exatas e da Terra UFU |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/17419 https://doi.org/10.14393/ufu.di.2014.477 |
Resumo: | In this work, was evaluated the treatment of the effluent from a fipronil insecticide production plant by a process that consists of two parts: initially a conventional treatment step, by flocculation, was carried out in order to remove suspended solids. For that, were tested the concentrations of 40, 80, 160, 240 e 320 mg L-1, of the flocculant (FeCl3), obtaining the highest solid and fipronil removal efficiency when the 160 mg L-1 concentration was used. Once this first treatment step was done, was evaluated the photodegradation by photo-Fenton process, using artificial UV irradiation. The process efficiency was monitored by fipronil concentration decay, determined by high performance liquid chromatography (HPLC), removal of organic load given by dissolved organic carbon (DOC), chemical oxygen demand (COD) decay and H2O2 consumption. In addition, acute toxicity tests were performed, using the microcrustacean Artemia salina. The H2O2 concentrations of 2241, 2689, 3362, 4482 e 6723 mg L-1 were evaluated, according to the efficiency and kinetic of organic matter decay. With the increasing of H2O2 concentration, was observed an enhancement on degradation efficiency, therefore, the highest degradation efficiency was achieved when the highest H2O2 concentration was used. In a second moment was tested, the amount of Fe2+, among concentrations of 15, 45 e 60 mg L-1, the concentration of 60 mg L-1 presented the best DOC and COD removal results. The organic load effect on the degradation process was also evaluated, the effluent was diluted to 20, 15 and 5% in total volume, then experiments under the previously determined conditions, [Fe2+] = 60 mg L-1 and [H2O2] = 6732 mg L-1, was carried out. The best removal efficiency and kinetic results was obtained by the highest organic load tested. With the parameters optimized, the evolution of acute toxicity to Artemia salina was monitored during the photo-Fenton degradation. A decrease of toxicity from 100 to 13% at the first hour of reaction was observed. Based on these results, it can be stated that the coupling between the flocculation and photo-Fenton processes, can be considered as a good alternative for the treatment of this kind of effluent, once it gives high efficiency on suspended solid, fipronil, organic matter and toxicity removal. |