Sínteses, caracterizações e estudo de propriedades físicas de nanocristais de ZnO dopados com íons metais de transição

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Batista, Elisson Andrade
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Física
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/28910
http://doi.org/10.14393/ufu.te.2019.2604
Resumo: Zinc oxide (ZnO) is a semiconductor that has several interesting physical properties, which can be modified or improved depending on the transition metal (TM) incorporated into its crystalline structure. When doped, this material is called diluted magnetic semiconductor (DMS) and its properties are due to the strong sp-d exchange interaction between the charge carriers of the nanocrystals (NCs) and the unpaired electrons of the TM. In this work, we investigated the effect of both Mn and Co concentration on the physical properties of ZnO NCs, synthesized by the chemical precipitation method in aqueous solution. These properties were investigated by Raman spectroscopy, X-ray diffraction (XRD), optical absorption (OA) spectroscopy, fluorescence (FL), and electronic paramagnetic resonance (EPR). To investigate the ion incorporation in ZnO crystal structure, Rietveld refinements in the XRD data, crystalline field theory (CFT) in the OA spectra, and EPR results were used. The results showed that it is possible to control the NCs properties of ZnO, Zn1-xMnxO, Zn1-xMnxO/ZnMn2O4, and Zn1-xCoxO/ZnCo2O4 from the variation of the dopant concentration. We believe that these results may give rise to a great deal of interest in the scientific community, regarding the synthesis and processing of materials from the methodology adopted in this work, contributing to the understanding of the properties of semiconductor and/or semimagnetic nanostructures.