Desenvolvimento e aplicação de eletrodos quimicamente modificados com nanotubos de carbono e óxido de zinco nanoestruturado

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Freire, Poliana Guimarães
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Química
Ciências Exatas e da Terra
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/17439
https://doi.org/10.14393/ufu.di.2015.182
Resumo: This work presents the electrochemical study of the chemically modified electrode with carbon nanotubes (CNT) and nanostructured zinc oxide aiming the selective and sensitive detection and quantification of phenolic compounds, such as dopamine (DA), hydroquinone (HQ) and tert-butylhydroquinone (TBHQ). Two types of CNTs of different diameters (110-170 nm x 5-9 μm e 6-9 nm x 5 μm), as well as ZnO nanoparticles of three different morphologies (nanoflower, spherical, and irregular morphologies), were evaluated in the formation of a composite material applied to the electrochemical oxidation of DA, HQ and TBHQ by cyclic voltammetry. First, the CNTs were characterized by Raman spectroscopy in order to verify the relation of structural defects with CNT diameter, and X-ray diffraction to verify the possible presence of metals into the CNTs, which can present electrocatalysis effect. The active area was estimated applying the Randles-Sevcik equation for the reversible electrochemical system, [Fe(CN)₆]3−/[Fe(CN)₆]4−, using an unmodified glassy carbon, and modified with CNT and with CNT/ZnO composite, which presented the higher active area. The composite formed by ZnO and CNT of higher diameter resulted in higher oxidation currents for the studied compounds. Scanning electron microscopy measurements were performed in order to characterize the morphologies of ZnO and the respective CNT/ZnO composites and correlated with the electrochemical activity of the different modified surfaces. Nanoflower-shape ZnO (ZnO A) resulted in a faster alternative way for charge transfer, which resulted in higher currents in comparison with spherical (ZnO B) and irregular (ZnO C) ZnO structures. A linear relation of the anodic and cathodic currents in function of the square root of scan rate values was verified, which indicates the limiting step in all the electrochemical processes is diffusional. It was observed in cyclic voltammetry measurements that the pH of solutions influenced the ΔE values for each analyte, and the lowest values were observed in 0.1 mol L-1 perchloric acid, which indicates higher electrochemical reversibility. Finally, the modified electrode was evaluated using batch-injection analysis (BIA) using 0.1 mol L-1 perchloric acid as electrolyte for the determination of HQ, TBHQ and DA. Applying the constant potential of 0.6 V, this system presented wide linear range (2-1000 μmol L-1) for the three analytes, with detection and quantification limits in the range of 0,01 0,14 μmol L-1 and 0,04 0,47 μmol L-1, respectively. The BIA method presented satisfactory repeatability with RSD value lower than 1.6%, elevated analytical frequency (85 h-1) and increase in sensitivity up to 130 times in comparison with the bare glassy carbon electrode. The prepared chemically modified electrodes presented special characteristics such as elevated sensitivity and stability for the determination of phenolic compounds and, therefore, open new perspectives to the analysis of clinical, pharmaceutical and environmental interests.