Avaliação de parâmetros operacionais na cinética de degradação do antibiótico ciprofloxacino pelo processo foto-fenton

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Santos, Lucilene Cândida dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Química
Ciências Exatas e da Terra
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/17424
https://doi.org/10.14393/ufu.di.2014.450
Resumo: In this work the degradation of the antibiotic ciprofloxacin CIP (33.1 mg L-1) by photo- Fenton process using artificial radiation was evaluated. First, the effect of different concentrations of Fe 3+ (1.4, 5.6, 11.2 and 16.8 mg L -1) on the kinetics of CIP and dissolved organic carbon DOC (mineralization), as well as the consumption of H2O2 using 510 mg L-1 of H2O2and pH 2.5-2.8 was studied. The CIP concentration was below of the quantitation limit of the equipment - LQ (<0.163 mg L-1) in just 2 minutes, for all concentration of Fe3+ evaluated, it was not possible to verify the effect of this operating parameter for the removal of CIP. Regarding the results of mineralization and consumption of H2O2, the best fit mathematical observed for all the experimental data obtained at different concentrations of Fe3+ evaluated, was first order. Furthermore, it was observed that the concentration of Fe3+ resulted in a proportional increase in the rate of mineralization and consumption of H2O2, being the concentration of 11.2 mg L-1 of Fe3+ chosen for the subsequent experiments. Next, the effect of different concentrations of H2O2 (85, 170, 340, 510 and 680 mg L-1) on kinetics of CIP mineralization and consumption of H2O2 using the best concentration of Fe3+ (11.2 mg L-1), and at pH 2.5-2.8 was evaluated. Similar behavior observed for the different concentrations of Fe3+ was obtained, the best mathematical fit for CIP mineralization and H2O2 consumption was of first order. The rate of CIP mineralization also increased proportionally with H2O2 concentration, but up to a certain amount of H2O2 (340 mg L-1). Above of this concentration, there was a decrease in the rate of mineralization due to the occurrence of inefficient reactions. These results demonstrate the importance of evaluating the operational parameters, such as the concentrations of Fenton´s reagents, in order to optimize the efficiency of the photodegradation process, as well as reduce the costs of processes with chemical reagents. Thus, the best concentrations obtained experimentally in deionized water (DW) in relation to the operational parameters evaluated considering the CIP mineralization using artificial radiation were: [Fe3+] = 11.2 mg L-1 and [H2O2] = 340 mg L-1. Under these experimental conditions, the influence of different aqueous matrices (simulated seawater - SW and treated effluent from sewage treatment plant - STP) in the CIP degradation was evaluated, and the results were compared to those obtained in DW. Complete removal of CIP (considering the LQ equipment) was influenced by the composition of the matrices, since in DW occurred after 2 minutes of the photo-Fenton process, while 10 minutes were required in SW and STP effluent. This is probably due to the presence of inorganic anions (chloride and sulphate) in SW, which form stable complexes with iron, and also act as scavengers of hydroxyl radicals, as well as by the presence of natural organic matter present in the effluent of STP, which also competes with the target-compound by hydroxyl radicals, influencing the degradation process. Based on the results obtained in this work, it was observed that the photo-Fenton process can be an alternative of treatment to waters containing CIP, since there was complete removal of CIP (considering the LQ equipment) after only 2 minutes, followed by 75% of DOC removal and reduction of acute toxicity to A. saline from 76.7% ± 4.7% to 20.0% ± 10.0% after 60 minutes. Since several ecotoxicological effects are associated with waste pharmaceuticals, in specific antibiotics, in aquatic environments and conventional processes fail to remove them efficiently, the application of this process appears quite feasible.