Simulação de grandes escalas e simulação híbrida RANS/LES do escoamento sobre o degrau com condições de contorno turbulentas
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
BR Programa de Pós-graduação em Engenharia Mecânica Engenharias UFU |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/15035 |
Resumo: | The turbulent flow simulation through the Boussinesq s hypothesis is represented, currently, by two distinct methodologies, the Large-Eddy Simulation (LES) and the Reynolds Averaged Navier-Stokes Equations (RANS). New Hybrid RANS/LES methods are in development, taking off advantage of LES and RANS potentialities through a one only model. The present work deals with the evaluation of these three methodologies, LES, RANS and Hybrid RANS/LES through the turbulent backward-facing step flow simulation. This classical flow is a benchmark for new turbulence models due to the fact that, despite its simple geometry, it presents a very complex generation of three-dimensional structures, influencing the transition phenomenon and properties such as characteristics frequencies of vortex emission and reattachment length. Parallel to this, an inlet turbulent boundary condition influence study showed that the statistical and topological content of the inlet boundary layer profile can modify substantially results like reattachment length and pressure coefficient. A recycling method for generating three-dimensional, time-dependent turbulent boundary layer inflow data for Large-Eddy and Hybrid RANS/LES simulation is employed. Results for the three methodologies disclose that Large-Eddy Simulation and Hybrid RANS/LES methods present very similar descriptions for the turbulent backward-facing step flow, differing from the RANS s results, where the second order statistical moments are totally suppressed, with absence of three-dimensional and transient structures. |