Análise da influência da rigidez das ligações viga-pilar no comportamento estrutural de edifícios de múltiplos pavimentos em concreto armado

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Santos, Júlia Borges dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Engenharia Civil
Engenharias
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/14230
http://doi.org/10.14393/ufu.di.2016.316
Resumo: Conventional structural analysis of buildings in reinforced concrete is performed considering beam-column connections as rigid. However, experimental results prove the existence of relative rotations in beam-column connections of reinforced concrete structures, showing the partial transfer of bending moment. In this study the influence of the stiffness of beam-column connections on the structural behavior of multi-storey buildings in reinforced concrete was investigated. On a first stage, the value of the rotation restriction of connections was varied, observing the impact on horizontal displaceability of the structure, on the γz coefficient, on the negative and positive moments of the beams and on the longitudinal reinforcement of the pillars. This analysis was performed for buildings with 05, 10, 15 and 19 floors. The results show that the reduction of the rotation restriction of connections increases the values of the horizontal displacements, of the γz coefficient, of the positive moments and of the reinforcement of the pillars. The increases that occur on the values of the analyzed parameters become larger as the number of floors of buildings increases. On a second stage, the same building was calculated with rigid connections and deformable connections. In order to determine the factor αR of deformable connections, two analytical models available in literature were used, and a comparison between the results obtained by each analytical model was also performed. Based on the results, it is concluded that neglecting the influence of the stiffness of the beam-column connections on the analysis of monolithic reinforced concrete structures may result in different solutions compared to the real behavior of the structure. The stiffness values obtained with the analytical models that were used differ considerably from the condition of rigid connections, suggesting an adjustment on the standard consideration of rigid connections adopted by the computer programs of structural calculation.