Resistência ao cisalhamento em vigas de concreto armado sem armadura transversal reforçadas com fibras de aço
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
Brasil Programa de Pós-graduação em Engenharia Civil |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/19238 http://doi.org/10.14393/ufu.di.2017.239 |
Resumo: | In this work, an experimental research was developed to evaluate the influence of the addition of steel fibers on the shear strength and rupture mode of reinforced concrete beams. The effects of fiber addition on compressive strength, splitting tensile strength and toughness were also analyzed. The experimental program consisted of the cast of 12 reinforced concrete beams without stirrups in the region of the shear forces. Six cylindrical specimens were molded to all beams. For the beams with fibers, three prismatic specimens were casted to the ASTM C1609 test. Two classes of compressive strength of concrete (20 MPa and 40 MPa), two longitudinal tensile reinforcement ratio (1.32 % and 1.55 %) and three fiber contents in volume (0 % , 0.64 % And 0.77 %) were utilized. The four point bending tests were performed. The experimental results showed that the use of hooked steel fibers increases the shear strength of the beams and alters the cracking pattern providing some warning about the imminence of failure. The results of peak shear load were compared with the theoretical values estimated by the ACI 318, ABNT NBR 6118 and by five models published in the scientific literature developed to estimate the shear strength of beams with steel fibers. While the ACI 318 and ABNT NBR 6118 underestimated the shear strength of the beams with fibers, the Kwak et al. (2002) model that considered the mechanical properties of the concrete and the characteristics of the fibers presented theoretical results close to the experimental results of the beams. This result demonstrated the need for the use of parameters other than the tensile strength of concrete to predict the shear strength of concrete beams with fibers. The influence of the addition of fibers on the compressive strength was insignificant. The magnitude of the effect of the steel fibers on splitting tensile strength and toughness was dependent on the strength class of the concrete. |