Modelos de predição linear para análise de sinais eletroencefalográficos (EEG) e de matrizes multieletrodo (MEA)

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Ribeiro, Jaqueline Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Engenharia Elétrica
Engenharias
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/14464
Resumo: This work establishes models of neurophysiological signals, which are composed of spontaneous activity measurements taken by means of multielectrode arrays (MEAs) applied on in vitro cell cultures; as well as of neurological signals based on electroencephalography. These models suppose that MEAs are employed as neuroprostheses applied for detection and forecast of epileptic seizures, based on EEG signals or on invasive measurements which are taken in a cellular level. From this point of view, the signal processing tools must fulfil a problematic trade-off involving low computational complexity and real-time operation. Such requirements lead to the choice of auto-regressive adaptive-linear filtering and high-order statistics (HOE) as the techniques to be used in order to cope with, respectively, non-stationary signals and nonlinear systems. Linear prediction of both signals is quite efficient, particularly in the case of MEA signals, for which the model is stable and accurate. On the other hand, the convergence times for EEG signals are lower then their respective counterparts for MEA signals, which may be considered mainly non-Gaussian and correlated. Cyclic activity was also observed for MEA signals associated with neighboring electrodes, whereas signals recorded from small groups of neurons present a white-noise behaviour.