A influência dos parâmetros de Análise por Semântica Latente aplicada a localização de defeitos de software

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Silva, Allysson Costa e
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Ciência da Computação
Ciências Exatas e da Terra
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/12505
Resumo: During its life cycle, software systems must pass through continuous change to have bugs fixed and get a reasonable conformance between user requirements and implemented software functions. The necessary effort to execute such changes that occur in the software maintenance phase is considerable and is influenced by the developer software comprehension level. In this way, the production and improvement of tools related to software comprehension can speed up and minimize software maintenance efforts. In this work, a tool to retrieve the traceability links between documentation (bug descriptions) and source code was implemented using an Information Retrieval technique. The main purpose of this work is the analysis of the influence of Latent Semantic Indexing (LSI) parameters values on accuracy and performance of the tool. The accuracy was measured with the number of methods that should be checked by the developer to find a bug. This study has shown that the parameter s values have direct impact on software maintenance accuracy and performance. The predominant parameter s values were: dimensionality reduction k=300; positive use of weighting functions for method and class names and for method and class name fragments; use of ET or QTL source code filters. Additionally, it was possible to identify semantic alignments between the user vocabulary and method and class names.