Analytical catalytic pyrolysis of soybean residue and cocoa bean shell

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Gonzalez, Rodolfo Sapata
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Química
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/43155
http://doi.org/10.14393/ufu.di.2024.16
Resumo: Com a crescente preocupação com os impactos das Mudanças Climáticas, há um aumento na exploração de tecnologias para substituição de combustíveis fósseis por fontes renováveis. Dentre diversas alternativas, o processo de pirólise surge como uma solução promissora para enfrentar os atuais desafios relacionados a geração de energia. Além disso, pode resolver eficazmente o problema crescente da produção de resíduos, que aumenta (especialmente no sector agrícola) com o crescimento populacional. Contudo, a eficiência deste processo termoquímico necessita de melhorias, principalmente no que diz respeito à qualidade dos produtos resultantes. Para aprofundar o aprimoramento desta alternativa, a pirólise analítica prova ser uma ferramenta essencial para investigar o comportamento pirolítico, analisar a composição dos produtos da pirólise e estudar os efeitos durante a pirólise do material orgânico. Este estudo investiga a aplicação de quatro catalisadores diferentes (zeólita HZSM-5, hidrotalcita e catalisadores derivados de ácido nióbico: Ni-Re/Nb2O5 e Ni/Nb2O5) durante a pirólise catalítica de dois resíduos agrícolas distintos: resíduo de soja (SR) e casca de grão de cacau (CBS), empregando a pirólise analítica sob uma atmosfera de hélio. Ambos os resíduos partilham características com outras biomassas, apresentando elevados voláteis 78 e 88%, respetivamente, teor de carbono de 49 e 45%, níveis de hidrogénio mais elevados do que outras biomassas (11 e 9%), e SR exibindo um notável teor de nitrogênio de 6%. A análise termogravimétrica (TGA) revelou que quase todos os componentes são consumidos em torno de 450°C para ambas as biomassas. Os experimentos de pirólise envolveram 3 etapas: avaliação dos efeitos do tipo de catalisador, temperatura e proporção do catalisador. Testes analíticos de pirólise foram realizados na biomassa pura a 350, 450, 550, 650 e 750°C, gerando produtos heterogêneos com prevalência de compostos oxigenados, incluindo ácidos, aldeídos, cetonas, fenóis, álcoois e éteres. A temperatura demonstrou um impacto menor na sua conversão térmica, com o maior teor de hidrocarbonetos observado a 750°C (34 e 17%), composto principalmente por derivados de propeno e benzeno. A 550°C, todos os quatro catalisadores, com uma proporção catalisador-biomassa (C:B) de 3:1, apresentaram a capacidade de reduzir compostos de oxigênio. Comportamentos que foram altamente semelhantes entre SR e CBS. No entanto, os catalisadores de ácido nióbico converteram uma quantidade substancial em compostos nitrogenados, principalmente nitrilos de cadeia longa, constituindo 42 e 24% com Ni/Nb2O5. HTC e HZSMS-5 exibiram potencial superior para melhorar a qualidade de produtos pirolíticos. Outros testes a 450, 650 e 750°C revelaram que os resultados do HTC melhoraram em temperaturas mais altas, produzindo 54 e 43% de hidrocarbonetos a 750°C. Em contrapartida, o catalisador HZSM 5 mostrou-se mais eficiente, atingindo valores em torno de 70% para ambas as biomassas. Assim, o HZSM-5 foi selecionado para avaliação da proporção de catalisador na etapa final dos experimentos, conduzidos a 550 e 750°C, com relações adicionais de C:B de 1:1 e 5:1 para comparação com resultados anteriores. Em conclusão, a zeólita HZSM-5 exibiu resultados satisfatórios em relação a otimização da qualidade dos produtos pirolíticos e, ao mesmo tempo, pode minimizar potencialmente as temperaturas de reação. Os melhores resultados foram alcançados a 550°C, onde 95 e 90% dos compostos gerados a partir de SR e CBS, respectivamente, eram hidrocarbonetos, sendo 74 e 82% aromáticos.