A propriedade positiva de Schur em reticulados de Banach

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Tabares, Juan David Rubio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/43171
http://doi.org/10.14393/ufu.di.2024.174
Resumo: The purpose of this dissertation is to study, in several aspects, the positive Schur property in Banach lattices. In order to justify the example of a Banach lattice with the positive Schur property failing the Schur property, a criterion for weak convergence in L 1 [0, 1], which recovers the Rademacher sequence as a particular instance, is proved. Examples, counterexamples and several properties of the positive Schur property are provided. We also study this property in countable direct sums and in l p (Γ)-spaces. Next, the positive Schur property in spaces of regular operators is investigated, and a lattice version of Ryan’s Theorem is proved. Finally, several characterizations of the positive Schur property in dual lattices are proved.