Modelagem e simulação de escoamentos turbulentos com efeitos térmicos, utilizando a metodologia da fronteira imersa e malha adaptativa
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
Brasil Programa de Pós-graduação em Engenharia Mecânica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/18667 http://dx.doi.org/10.14393/ufu.te.2017.79 |
Resumo: | In the present thesis we present the modeling and simulations of turbulent flows around noncartesian geometries, using the immersed boundary method to model immersed bodies, and block-structured cartesian meshes for the fluid domain. Thermal effects were also modeled through the transport equation for thermal energy and thermal immersed boundary conditions with first, second and third type. First, the continuity and Navier-Stokes equations were discretized and implemented through conservative and non-conservative formulations, in the totally implicit and semi-implicit forms. Turbulence models were implemented and used to better model in adaptive mesh. In this context, two models of the RANS class, the Spalart-Allmaras model and the Wilcox k-® model were discretized and implemented, and for Subgrid-Scale Modeling were implemented the Smagorinsky model, with or without the Van Driest damping function, and Germano’s dynamic model, also using the explicit filtering technique. For the modeling of non-Cartesian geometries, the immersed boundary methodology was used for the fluid-dynamic and the thermal effects. The thermal effects were modeled in the flow and in the immersed geometry, so the first, second and third types of boundary conditions were implemented. All the development was performed in the AMR3DP code, developed in the Fluid Mechanics Laboratory of the Federal University of Uberlândia, in partnership with PETROBRAS. Results of verification and validation of all the development carried out in the context of the present thesis were presented. |