Avaliação do desempenho de unidade eletrocirúrgica
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
Brasil Programa de Pós-graduação em Engenharia Mecânica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/20769 http://dx.doi.org/10.14393/ufu.di.2018.165 |
Resumo: | The objective of this work is to evaluate the metrological performance of 15 electrosurgical unit from two manufacturers and three different models when subjected to ambient temperature variations. For this, five levels of the temperature factor and three points of the nominal range of the cutting and coagulation powers were considered. The tests were performed by coupling the evaluation electrosurgical unit to a power analyzer. The Tukey test was applied in order to make multiple comparisons between the levels of the temperature factor. The metrological parameters measurement uncertainty, error, repeatability and maximum error were estimated for all evaluated electrosurgical unit. The uncertainty associated with the measurement was evaluated according to the recommendations of the Guide to the Expression of Uncertainty in Measurement (GUM). Analysis of variance (ANOVA), Tukey test and boxplot indicated significant statistically effects of the temperature factor on the cutting and coagulation power values. The expanded uncertainty associated with cutting and coagulation power values increased significantly as they approached the upper limit of the nominal range. Significant differences were observed between the scalpels of manufacturers A and B mainly for lower power values. The scalpels of the manufacturer A presented superior performance. At 50 W, 150 W and 300 W cutting powers, it was observed that 33 %, 87 % and 100 %, respectively, of the scalpels had maximum error values greater than 5 W and therefore they did not meet the criterion specified by the manufacturer (maximum error must be less than 5 W). For the coagulation powers, 30 W, 80 W and 120 W these percentages were respectively 0, 53 % and 60 %. The electrosurgical unit evaluated have a metrological performance that can compromise the success of the surgical process. |