SL(n,Z) como reticulado de SL(n,R) via conjuntos de Siegel
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
Brasil Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/39012 http://doi.org/10.14393/ufu.di.2023.396 |
Resumo: | In this work, we will present a reconstruction of the proof that the group SL(n, Z) forms a lattice in SL(n, R). With the aim of providing a geometric perspective on the definition of lattice and fundamental domain, we will introduce the concept of lattices in R^n. Additionally, we will explore essential concepts related to Lie groups. We will also briefly delve into the Haar measure. Drawing from various reference works, we will define Siegel sets as a suitable fundamental domain for the action of SL(n, Z) on SL(n, R). We will demonstrate that SL(n, Z) is a discrete subgroup of SL(n, R), and that the Siegel sets, properly defined, constitute a slightly larger and simpler fundamental domain for this action, with finite volume. Thus, SL(n, Z) forms a lattice in SL(n, R). |