Controle e validação de um microtribômetro instrumentado para observar a evolução da marca de desgaste via microscopia óptica

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Dutra, Rina Mariane Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Mecânica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/18937
Resumo: A new microtribometer capable of performing an optical analysis of the wear interface was developed in order to study friction and wear in low load reciprocating sliding wear tests. A piezoelectric actuator and a programmable system allow normal force control during the test. A tridimensional load cell is responsible for continuous measurement of normal load and frictional force. An LVDT sensor coupled to the sample driving apparatus measures the position of the sample during testing. This system’s characteristic high data acquisition rate allows the generation of 3D triboscopy maps, in which the colours quantify the friction coefficient according to the position within the wear mark and the number of cycles. Furthermore, an optical microscope mounted in the portico periodically captures images in a particular wear mark position showing the evolution of the events observed during the wear process. The frequency of the movement may vary between 0.03 to 2.0 Hz and the normal load applied from 0.3 to 13 N. In order to validate this device the friction coefficient, the wear mechanisms and the worn volume were compared with tests performed in a commercial tribometer. A VC10 steel chemically coated with nickel was used as sample. In both tribometers the frequency, load and amplitude parameters were set as 2.0 Hz, 9.81 N and 10 mm respectively. The counterbody was an AISI 52100 steel ball with 5.0 mm diameter. Results showed that this new microtribometer provides similar wear mechanisms, friction coefficient and worn volume when compared to the commercial tribometer, ensuring good reliability for tribological tests. After the equipment validation, triboscopy maps and image captures were used to monitor and analyze the evolution of the wear tracks produced during the sliding reciprocating tests.