Estudo experimental do comportamento de vigas de concreto armado reforçadas à flexão por meio de graute, armaduras e conectores / Júnior Henrique Canaval
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
Brasil Programa de Pós-graduação em Engenharia Civil |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/17853 http://doi.org/10.14393/ufu.di.2016.429 |
Resumo: | This work is based on an experimental investigation of reinforced concrete beams strengthened to flexure and the influence of a type of connector. The experimental program consisted of 8 sets of concrete blocks and 15 beams. The blocks used in shear tests with cross section of 15 cm x 15 cm, 4 sets without connectors and 4 with connectors. The beams for flexure testing had cross sections of 12 cm x 22 cm and length of 200 cm, divided in three series of the tests, each involving five beams: 5 beams was used for reference, that is, without reinforcement. 10 beams reinforced with surface brushed texture substrate, 5 of them with metal connectors bonded to the substrate. Beams were made with self-compacting concrete of 20 MPa, 2ø12,5 mm to longitudinal bottom reinforcement and 2ø5 mm at longitudinal top. The stirrups were ø5 mm and 10 cm long run. The beams were submitted to four-point load bending test. Previously to the rupture and reinforcement, all the beams were submitted to the project load up to its deflection's stabilization, later, the load was reduced to 80% and executed the reinforcement and finally tested to rupture. The reinforcement was composed of 5 cm grouting increase on the sides and bottom of the beam in a length of 140 cm, symmetrically of the center. The additional reinforcement was similar to the used in the beam. The applied force, the displacement, deformations in steel and in concrete were measured. In direct shear tests in blocks, the connectors contributed to increase in the rupture average stress in 70.8%. The reference beams broken by flexure with loads next to those calculated. The results, the flexure reinforcement was efficient, increasing the load capacity by 44% and changed the rupture mechanism to shear at the unreinforced section. At the beams with connectors the increase was of 47%, a little superior because they had not only been total requested. |