Análise e desenvolvimento de um retificador trifásico de 12 pulsos com autotransformador e conversores SEPIC isolados
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
Brasil Programa de Pós-graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/20804 http://dx.doi.org/10.14393/ufu.di.2018.179 |
Resumo: | With the constant increase of electronic components inserted in the diverse areas of electronics at the present time, it becomes evident a concern of harmonic disturbances of current in the quality of the energy. This work has the purpose of addressing one of the alternatives to reduce this problem, developed a 12-pulse rectifier with two DC-DC SEPIC converters of 500 W in each rectifier, with galvanic isolation, operating in continuous conduction and with high power factor and low harmonic distortion in the rectifier input current. The use of the autotransformer contributes to the reduction of the weight and volume of the structure, being an insulation made on the intermediate stage of high frequency. The connection between a load and the multi-pulse rectifier is conventionally made from the use of special interface transformers. They include a complex design and still have considerable weight and volume. Therefore, these special transformers are replaced by the static converters, which guarantee the balance between each rectifier group and obtain regular output voltage. This structure can be used in a variety of applications, such as driving electric machines, battery chargers and aircraft, performing functions previously controlled by hydraulic, pneumatic and mechanical mechanisms, increasing the reliability of the process. This work presents in detail the development of two control strategies, with the objective of balancing the power processing between each module and regulating the output voltage. The computational and experimental results were obtained through the construction of a prototype. |