Modelagem de águas subterrâneas baseada em um aquífero experimental

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Navas, Carlos Fernando Medina
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Civil
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/29398
http://doi.org/10.14393/ufu.di.2020.447
Resumo: Mathematical modeling has become an important part of most projects dealing with the development, protection and remediation of groundwater. Most codes currently available or software for modeling groundwater are based on finite element, finite difference and finite volume methods. The focus of this project was the simulation of an aquifer using the finite difference method (FDM). This project was divided in two phases: The experimental phase and computational simulation phase. This first phase consisted on the construction of an experimental aquifer, in an acrylic tank, with dimensions 1.80 m x 1.00 m x 0.50 m. This tank was filled with porous medium and contains 22 tubes that work as piezometers, allowing measurements of water level and extraction from needle valve installed in its base. The porous medium used of the sandy type, with a particle size of less than 1.41 mm (sieve # 14). The experiment was based on removing the flow of one or more piezometers and measuring water levels in the neighboring piezometers. The entire test was filmed, which allowed to obtain the temporal variation of the phreatic surface of the aquifer prototype. The results of this drawdowns on the various piezometers also served to obtain system parameters, such as hydraulic conductivity and the storage coefficient. In the second phase, a mathematical / computational model of underground flow was built and simulated, based on the Finite Difference Method (FDM) and on the integrated hydraulic load equation along the aquifer thickness (2DH model). The simulated results were compared with the experimental results, in order to validate this model. In this context, it was found that the simulated drawdowns showed behavior similar to the curves measured in the experiment. This was verified both in the case of a single active well, and in the case of multiple active wells. It can be inferred that the experimental and numerical models that were developed have the potential to be used in the analysis of unconfined aquifer.