Análise da confiabilidade de estruturas sujeitas a controle passivo e ativo de vibrações

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Cunha, Leandro Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Engenharia Mecânica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/21211
http://dx.doi.org/10.14393/ufu.di.2018.1107
Resumo: This dissertation is devoted to the reliability analysis of structures subjected to active and passive vibration control, with emphasis on the use of First Order Reliability Method (FORM) and Second Order Reliability Method (SORM). These methods are used to evaluate the reliability indices and the associated failure probability, considering that the random variables are modeled by probability density functions. Three techniques of vibration control are considered, namely: active control using PZT stack actuators, passive control based on dynamic vibration absorbers, and passive control based on piezoelectric transducers connected to resonant shunt circuits. For each technique, limit state functions are defined related to the operational limitations or design requirements. Their evaluation is made from structural responses obtained from finite element models. For each control technique, numerical applications of FORM and SORM are carried-out for a two-dimensional truss, defined as the structure of interest. To assess the accuracy of the reliability estimations provided by those methods, Monte Carlo Simulations are also performed. The numerical results enable to put in evidence specific characteristics of each control technique as related to reliability. Specifically, for two of them it is verified the occurrence of atypical geometrical forms of the safety and failure domains, which preclude the use of FORM and SORM. In general, the results confirm the importance and convenience of performing reliability assessment of structures subjected to vibration control procedures.