Resistência ao desgaste por cavitação de diferentes ligas aplicadas pelo processo GMAW com e sem adição de arame frio
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
BR Programa de Pós-graduação em Engenharia Mecânica Engenharias UFU |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/14763 https://doi.org/10.14393/ufu.te.2014.80 |
Resumo: | The phenomenon of cavitation on the metal surface causes erosion decaying components in operation, in particular the blades of turbines for power generation, accounting for maintenance costs and losses in electricity generation resulting from periodic stops. The blades of these turbines, particularly those manufactured by C-Mn steel (carbon - manganese) are coated by arc welding for stainless steel protective order to present more uptime or longer intervals between maintenance periods. Among the materials used to coat these blades are austenitic stainless steels, and stainless steels featured in the Co and Cobased alloys (commercially Stellites). However, the latter have a high cost. Among the welding processes applied to the coating, the technique of adding cold wire (GMAW and GMAW-CW-AF) is presented as an advantageous tender in relation to other techniques currently existing special and conventional welding. Given the context, this work seeks to study, apply and evaluate the effect of alloy and austenitic stainless steel alloys Co (CoCrMo and CoCrW) deposited by GMAW-CW for the purpose of characterization, comparison, formulation and deposition of new alloys from commercial wire correlating with resistance to mass loss. The adjustments of welding technique have focused on obtaining the manufacture of coatings suitable welding parameters. The cavitation wear resistance was evaluated according to ASTM G 32, correlating microstructure and phases by optical microscopy, SEM-EDS, chemical composition and optical emission spectrometry analyzes of the phases present by XRD. The qualities of the welded surfaces have been analyzed by visual examination and Penetrant Liguid according to standard NT (Nondestructive Testing). It was found that the coatings showed good weldability without discontinuities or defects with good surface finish. In the analysis of the coatings of cobalt, the alloy H (Stellite electrode 21 and 309LSi as cold wire) and M (Stellite 6 and 309LSi electrode as cold wire) showed good performance in resistance to cavitation in similar levels of surface roughness and hardness when compared to coatings Stellites 21 and 06, made by conventional GMAW process. |