Mineração de dados como suporte educacional

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: MIRANDA, Larissa de Pádua
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Triângulo Mineiro
Instituto de Ciências Exatas, Naturais e Educação - ICENE::Curso de Licenciatura em Matemática
Brasil
UFTM
Programa de Mestrado Profissional em Matemática em Rede Nacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://bdtd.uftm.edu.br/handle/tede/635
Resumo: Ao considerar as demandas educacionais, o processo de informatização do ambiente escolar e o baixo desempenho dos alunos na disciplina de matemática, propõe-se pesquisar, conhecer e adaptar materiais que viabilizem a classificação de estudantes a partir de perfis pautados na relação entre fatores sociais, escolares (avaliações bimestrais e somativas) e extraescolares que possam influenciar sobremaneira no rendimento deles ao final do ano letivo. Para isso, utilizou-se a Mineração de Dados Educacionais (do inglês Educational Data Mining, EDM) – especificamente os algoritmos Random Forest, Gradient Boosting Classifier e KNearest Neighbor Algorithm (KNN) – e a linguagem de programação Python para adaptar modelos por meio de dois conjuntos de dados disponíveis em um site gratuito para comparar a eficiência entre eles. Pretende-se identificar fatores sociais e extraescolares, além de construir perfis de alunos de determinada comunidade, com vistas a discutir metodologias que podem otimizar o processo de ensino e aprendizagem.