Filmes nanoestruturados contendo grafeno e óxidos metálicos para estudo em dispositivos supercapacitores
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Triângulo Mineiro
Instituto de Ciências Exatas, Naturais e Educação - ICENE Brasil UFTM Programa de Pós-Graduação Multicêntrico em Química de Minas Gerais |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://bdtd.uftm.edu.br/handle/tede/1066 |
Resumo: | Pesquisas envolvendo novos nanocompósitos são essenciais para alcançar supercapacitores com desempenho aprimorado para armazenamento de energia. Materiais de carbono e óxidos metálicos foram empregados em conjunto para alcançar supercapacitores com propriedades melhoradas. Neste trabalho são apresentadas abordagens para aplicação de filmes nanoestruturados utilizando a técnica Layer-byLayer (LbL) contendo nanoestruturas de óxidos metálicos como MnO2, ZnO e PdO, incorporadas em folhas de óxido de grafeno reduzido (rGO) e dispostas com polialilamina hidroclorada (PAH) em um substrato de ITO (Óxido de índio e estanho) para estudo em supercapacitores. Espectroscopia na região do ultravioleta visível (UV-VIS) indicam o crescimento dos filmes, enquanto imagens de microscopia eletrônica de varredura com emissão de campo (FEG-SEM), confirmam a incorporação de nanoestruturas dos óxidos metálicos por entre as camadas de rGO e na superfície, enquanto medições de voltametria cíclica (CV) e de carga e descarga galvanostática revelam as propriedades eletrocapacitivas dos filmes. Os maiores valores de capacitância obtidos foram de 112 mF/cm2 e 460 F/g, 19 mF/cm² e 137 F/g, 26 mF/cm² e 1650 F/g, 3,4 mF/cm² e 50 F/g, para os sistemas de arquitetura PAH/rGO-MnO2, PAH/rGO-ZnO, PAH/rGO-MnO2-ZnO e PAH/rGO-PdO, respectivamente, em uma corrente de 4,85x10-6 A e 1 mV/s. Todos apresentaram alto desempenho de retenção capacitiva com perdas menores que 1% durante 10.000 ciclos de carga e descarga. Estes resultados demonstram que os filmes investigados possuem propriedades favoráveis para serem explorados em sistemas nanoestruturados de armazenamento de energia. |