Uso de rotinas de aprendizado de máquina em prontuário eletrônico para apoio a diagnósticos de pacientes oftalmológicos
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Paulo (UNIFESP)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=10989782 https://repositorio.unifesp.br/handle/11600/68367 |
Resumo: | Objective: To implement artificial intelligence routines through machine learning to construct diagnostic prediction models with data from electronic medical records of patients from the Department of Ophthalmology of Hospital São Paulo. Method: Preparation of a literature review of the main techniques and solutions of machine learning to use in electronic medical records, 1. extraction, treatment and analysis of data from medical records of the Department; 2. construction and analysis of vectorization models of related words in the context of the Database of Hospital São Paulo; 3. construction and validation of diagnostic prediction models. Results: The word vectorization models were able to capture the semantics of medical terms and enabled the construction of diagnostic prediction models, making the prediction model a great tool to assist health professionals. Conclusion: The machine learning models showed potential results to assist as diagnostic support tools of ophthalmologic patients. |