Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Macêdo, Eduardo Állysson Alves Gonçalves [UNIFESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Paulo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.unifesp.br/handle/11600/68965
|
Resumo: |
Neste trabalho, o Team Orienteering Problem (TOP) é resolvido utilizando dois métodos híbridos resultantes da integração da metaheurística Iterated Local Search (ILS) com a matheuristic Fix-and-Optimize (F&O) e da metaheurística Biased Random-Key Genetic Algorithm (BRKGA) com o F&O. O Team Orienteering Problem é um problema de otimização combinatória NP-difícil pertencente à classe de problemas de roteamento com prêmios. Seu objetivo é maximizar um prêmio total coletado por uma frota de veículos, determinando quais localidades são visitadas por cada veículo e em que sequência, restrito ao tempo máximo de duração de cada rota. A implementação do ILS contou com heurísticas de busca local contendo métricas específicas para a inclusão ou substituição de localidades. De modo semelhante, um decoder específico para o TOP foi proposto na implementação do BRKGA. Quanto ao F&O, foi utilizada, para a solução dos subproblemas, uma definição de subconjuntos de variáveis baseada em nós adjacentes, priorizando a inclusão dos nós e variáveis associadas em cada subconjunto baseada na distância dos nós não visitados aos nós pertencentes às rotas. Todas as implementações foram realizadas em linguagem de programação Julia e o Gurobi foi utilizado como pacote de otimização para a solução dos problemas de programação inteira mista no âmbito do F&O. Para analisar a efetividade dos métodos propostos, foram realizados experimentos computacionais com 3 conjuntos de instâncias de maior porte constantes da literatura, contendo ao todo 179 instâncias com número de localidades variando de 100 a 400 e os algoritmos foram executados 20 vezes para cada uma das instâncias. O ILS + F&O obteve resultados idênticos aos das melhores soluções conhecidas em 94 instâncias e um desvio percentual médio de 0,53% com melhor desempenho nas instâncias de menor porte. Já o BRKGA + F&O alcançou um melhor desempenho nas instâncias de grande porte e obteve resultados idênticos aos das melhores soluções conhecidas em 92 instâncias e um desvio percentual médio de 0,50%. Verificou-se que os métodos demonstraram efetividade na solução do problema, sendo comparáveis a outros métodos apresentados na literatura. |