Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Loiola, Rodrigo Azevedo [UNIFESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Paulo (UNIFESP)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://repositorio.unifesp.br/handle/11600/9747
|
Resumo: |
Activation of B1 receptor in the vascular endothelium triggers diverse signaling pathways that results in elevation of intracellular Ca2+ and Nitric Oxide Synthase (NOS) activation, followed by NO production and vasodilation. Although much has been investigated about the B1-induction and functionality during inflammation, the importance of B1 subtype in normal vessels remains unclear. To clarify this question, the present study analyzed endothelial function and endothelial NO generation in B1 receptor knockout (B1 -/-) and Wild Type (WT) mice. Mesenteric arteriolar bed was perfused with Krebs solution and vascular responses to Acetilcholine (ACh), sodium nitroprusside (SNP) and norepinephrine (NE) were evaluated by a data acquisition system. Plasmatic NO levels (μmol/L) were analyzed by NO derivatives nitrate and nitrite using NO Analyzer (NOATM280, Sievers Instruments) and vascular NO generation was assessed in mesenteric arterioles slices using DAF -2 DA, a fluorescent cell permeable dye for NO (arbitrary units, a.u.). NOS activity (pmol/mg.min) was measured by the biochemical conversion of L-[3H] arginine to L-[3H] citrulline in homogenates of mesenteric vessels in the presence of optimal levels of substrate and co-factors. Primary endothelial cells were incubated with DAF-2 DA and images obtained in a confocal microscope were analyzed by optic densitometry (a.u.). Cells were stimulated with ACh [1 mmol/L] in presence or absence of the NOS substrate Larginine, or the co-factor tetrahydrobiopterin (BH4), or the antioxidant compound ascorbic acid. Production of superoxide anion (a.u.) was assessed in endothelial cells incubated with dihydroethidine, a fluorescent cell permeable dye for superoxide anion, in the presence or absence of BH4 or ascorbic acid. Mesenteric arterioles from B1 -/- exhibited a severe impairment of ACh-vasodilation for all tested doses, with no changes in the response to SNP and NE. Circulating NO was markedly decreased in B1 -/- (49.6 ± 10.5*; n=6) vs WT (141.9 ± 17.3; n=6 ), accompanied by reduced basal NO release in mesenteric arterioles from B1 -/- (0.16 ± 0.03*; n=6) when compared to WT (0.58 ± 0.08; n=4). NOS activity was elevated in mesenteric homogenates from B1 -/- (3.4 ± 0.58*; n=4) in comparison to WT (1.9 ± 0.05; n=5). ACh-induced NO release was markedly reduced in primary cultured endothelial cells from B1 -/- (35.8 ± 3.1*; n=4) in comparison to WT cells (66.9 ± 3.2; n=4). NO release in endothelial cells from B1 -/- was reversed by incubation with BH4 (54.3 ± 1.7; n=4) and ascorbic acid (101.8 ± 6.0; n=4), but not by L-arginine, while incubation of endothelial cells from WT with BH4, ascorbic acid or L-arginine had no effect. Elevated production of superoxide anion in endothelial cells from B1 -/- (77,1 ± 2,5*; n=4) in comparison to WT (29,3 ± 6,9; n=4) was reversed by incubation with ascorbic acid (35,3 ± 6,4; n=3). The severe impairment in the endothelial-mediated vasodilation accompanied by decreased NO bioavailability, despite the augmented NOS activity, strongly indicates an exacerbation of NO inactivation. Reduced NO availability may be preceded by exacerbation of NO inactivation by superoxide anion, which can leads to inactivation of BH4 in vascular endothelium, resulting in NOS uncoupling and NOS derived production of superoxide anion. |