Algoritmo genérico com chaves aleatórias viciadas para problemas de otimização em portos

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Pomari, Carlos Zaca [UNIFESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Paulo (UNIFESP)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=1325140
https://repositorio.unifesp.br/handle/11600/46510
Resumo: The aim of this work is to address one of the problems that is present in the operation of many ports and that influences their efficiency: The berth allocation problem (BAP), which seeks to minimize the vessels? handling times, indicating their order of berthing and their location on the quay. This problem has strong theoretical and practical interests, since the growth of the world economy and international trade in goods has stimulated, in recent years, the demand for shipping services. The methodology for the development of this work consists in studying and applying a hybrid algorithm based on Biased Random Key Genetic Algorithm (BRKGA) and Clustering Search (CS) metaheuristics to heuristically solve the BAP. A BRKGA searches the solution space of the combinatorial optimization problem indirectly, therefore, it is necessary to specify how solutions are encoded and decoded and how their corresponding fitness values are computed. This study uses the BRKGA as solutions generator to the CS? clustering process. To validate the proposed method, computational tests are performed with instances available in the literature and a case study of the BAP with operating data from Tubarão-ES port.