Extração de atributos e classificação de lesões em imagens colposcópicas na prevenção do câncer do trato genital inferior

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Mussoi, Susana Rosa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Engenharia de Produção
UFSM
Programa de Pós-Graduação em Engenharia de Produção
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/8024
Resumo: Cervical cancer is a pathology that can be prevented through the diagnosis of pre-invasive alterations. These initial lesions can, in these periods, be submitted to some types of individualized treatments, avoiding the malignant neoplasia that, in general, it is invasive and lethal. The development of new methods for diagnosis is necessary. This work considers a way of images processing through tools of segmentation of digital colposcopy images. Morphological operators were applied to segment acetowhite and mosaic image data. The proposed methodology aimed at to assist in the identification of cervical pre-cancer lesions in relation the attributes of form, size, coloration, shading and edges that they can be easily accepted for different programs, being able to be used as plus a subsidy for the investigation and diagnosis of pathologies of the inferior genital region, assisting professionals of the health area that works in this speciality. The toolbox was developed using Mmorph for MatLab.