Variações espaciais de temperatura e densidade eletrônica de regiões HII nas Nuvens de Magalhães
Ano de defesa: | 2010 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
BR Física UFSM Programa de Pós-Graduação em Física |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/3887 |
Resumo: | The aim of this work had to estimate the physical proprieties of the HII region NGC 346 (belonging the Small Magellanic Cloud) and the estimation of electron density at point-to-point to 17 other ionized nebulae, in Magellanic Cloud. We were used spectroscopic images of a long split with high signal noise in the optical region, at red (6 000 to 7 000 °A), and at blue (4 000 to 5 000 °A), this only for NGC 346. The [Oiii] (λ4959+λ5007)/λ4363 emission line ratio was used like electron temperature sensor, and for electron density we used the [S ii] λ6716/λ6731 emission line ratio. For NGC 346, we found a relative homogeneity to distribution of electron temperature, with an average weighted by the Hβ flux of 12 269 K (equivalent to a dispersion of 6,1%). We estimated the spatial temperature fluctuation t2s ≈ 0, 0021 (equivalent to a dispersion of 4,5%), and the temperature fluctuation parameter of 0,0082 (9,2% of dispersion). The magnitude of the temperature fluctuations observed is in agreement with the large scale variations in temperature predicted by standard photoionization models, but is too low to explain the abundance discrepancy problem. By contrast, we found a mean value weighted by the Hα flux for the electron density of 54,18 cm−3 with a dispersion of 13,5%. For the others HII regions studied, we obtained a individual mean electron density relatively low, less than 100 cm−3 for most of the objects and some positions on 30 Doradus. Some profiles have a roughly Gaussian shape for the density distribution, that suggest a free expansion of ionized gas into the interstellar medium, such as the profile of LMC: N160 A (both positions) and SMC: N88 (PA = 90o). A gradient of electron density could indicate the existence of champagne effect, we indentified a light gradient of density on 30 Doradus (PA = 10o and 24o) and LMC: N11 E profiles. Moreover, a variation abruptly in electron density can be understood by the braking action of the ionized gas in its movement toward a molecular cloud. This was evidenced on 30 Doradus (PA = 26o and 10o), LMC: N4 A, LMC: N11 B, SMC: N81, SMC: N83 A,C (both positions) and SMC: N88 (PA = 106o) profiles. These objects stand out as a target for more detailed studies for the greater understanding of the dynamic structures of ionized nebulae. |