Estudo comparativo entre o condicionamento de ar geotérmico e o convencional e suas perspectivas para o sistema elétrico nacional
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
BR Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/8563 |
Resumo: | This dissertation deals with a comparison between energy consumption of conventional air conditioning and the surface geothermal conditioning for room environments. Studies have been conducted about soil constitution, heat exchangers and specifications of the tubes for water circulation. Based on these studies was the fitting of a conditioning system utilizing surface geothermal energy using a testing room and another one fitted with a conventional window air conditioner in an analog testing room environment. An electronic circuit maintains the temperature in the conventional air-conditioning reference room in similar conditions to the testing room using geothermal conditioning, also monitoring the power consumption in both units for comparative purposes. In this study, it was used the hill-climbing heuristic method to control and manage the best possible heat exchange with the underground, together with a DC converter used to regulate the electrical load of the hydraulic pump and the fan used in the geothermal conditioner. Experiments were performed with and without electronic management, proving so that this electronic control method increases the geothermal conditioner yielding and reduces power consumption. During the geothermal experiments the underground saturation suffered in the late summer period due to seasonal variation of soil temperature in the adopted depth and also because the sizing of the geothermal heat exchanger was below than planned. This fact, however served to demonstrate that this HCC condition does not maximize the thermal exchanges necessary to the proper functioning of the geothermal conditioner, and consequently, having an increase in electric power consumption. Among the major contributions of this dissertation is the development of a methodology for estimation of heat exchange between the basement and the living environment. One can also include how the sizing of the underground hoses and the electronic controller to manage the thermal exchanges between the underground and the conditioned environment. It proved also the feasibility of shallow geothermal energy for conditioning inhabited environments without heat pumps to reduce electricity consumption. |