Ligações semirrígidas na análise dinâmica de estruturas metálicas treliçadas

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Grotto, Luiz Guilherme
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Engenharia Civil
UFSM
Programa de Pós-Graduação em Engenharia Civil
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/15964
Resumo: In Brazil, lattice metalic towers are dimensioned to support their own weight, weight of cables or equipments that they have and mainly Wind load. But, even low-intensity dynamic actions can bring such a structure to collapse when excitation frequency is very close to one of tower's natural vibration frequencies. When this occurs, structure goes into resonance and amplitudes of displacements increase significantly. One of ways of controlling amplitudes and prevent a structure from collapsing is to increase its damping, so that energy induced by dynamic load can be dissipated more quickly. In order to evaluate response of structure to these loads, a mechanical model that represents reality is necessary. This work presents a numerical and experimental study about subject, evaluating dynamic properties of a lattice structure of aluminum. Natural frequencies and damping are evaluated experimentally by applying impacts to model. Flexibility of frame connections is changed by changing torque applied to screws and by inserting rubber rings between profiles that make up model. Accelerometers and computer programs are used to measure, receive, and process dynamic response of structure. In this way, first natural frequencies of vibration and damping behavior of structure are determined, latter calculated by logarithmic decrement. Same properties are evaluated in a computational numerical model, where same conditions of experimental stage are applied with aid of a finite element program and a direct integration program using central finite differences. It was observed that introduction of flexible elements increased damping rate of structure to the point of reducing natural frequency of vibration. In addition, it was identified that change in torque did not cause a significant change in dynamic properties of structure without rubber rings in connections, since no slip was observed between profiles.