SmartFogLB: balanceamento de carga na computação em névoa
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Ciência da Computação Centro de Tecnologia |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/22269 |
Resumo: | FogComputingischaracterizedasanextensionofCloudComputingtotheedgeofthe network.Suchaparadigm,therefore,doesnotexcludetheCloud,butcomplementsit,filling gapssuchaslowerresponsetimeandalsolessuseofinternetlinks.Thisparadigmmeetsthe needs imposedbytheInternetofThingsapplications,whichoftenhaverestrictionsonlow processing times,privacy,priority,bandwidth,amongothers. Considering thegrowinganddiversedemandforInternetofThingsapplications,the nodes thatcomposetheFogComputingtendtobeoverloaded,giventhelargenumberofsmart things requiringcomputationalcapabilities,suchasprocessing,storage,networking,among others. Consequently,overloadedcomputationalnodescompromisetheresponsetimesofIoT applications thathaverestrictionsfortheshortestpossibletime.Inthissense,themainchal- lenge toprovidetheshortestresponsetimeforsuchapplicationsisthedistributionoftasks between thefognodes.However,theavailabilityofcomputationalresourcesinthefogmustbe considered sinceitischaracterizedasadynamicenvironmenttoperformloadbalancinginthis newcomputingparadigm. Toalleviatetheresponsetimeproblem,thisworkpresentsaloadbalancingapproach that aimstoreducetheprocessingtimeofthetasksinthefognodes.Thedistributionoftasks between theNodesoftheFogwascarriedoutthroughdynamicloadbalancinginrealtime, whose contributionisthereforetheloadbalancingalgorithmthattakesintoaccountthedynam- ics andcomputationalheterogeneityoftheenvironment,aswellasthesuddenchangesinthe indexesuseofcomputationalresources,whichassociatestasksmoreappropriately. Toprovetheeffectivenessoftheproposedsolution,asimulationenvironmentwasor- ganized,wherethisworkwascomparedwithsomeloadbalancingapproaches,suchasRound- Robin andalsowithoutabalancer.Theresultsshowthathighprioritytasksconsumetheshort- est possibleresponsetimeintheenvironment,eitherinprocessingorinthequeue,whichbrings out theeffectivenessoftheproposedsolution.Thepriority-basedqueuingmechanismproved to beanimportantcomponentofthesolution,whichanalyzesandreorganizesthetaskqueue based onitspriorities. |