O modelo de McCormack no escoamento de gases rarefeitos

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Tres, Anderson
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Matemática
UFSM
Programa de Pós-Graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/9968
Resumo: In this paper, we present numerical results for macroscopic quantities of interest (velocity profile, the heat ow profile and shear stress) for the ow of a binary mixture of rarefied gases in microchannels of arbitrary planes, defined by two infinite parallel lates without symmetry condition. The ow of gas mixture is due to a constant pressure gradient (Poiseuille's Problem), a temperature gradient (Problem Thermal-Creep) and a density gradient (Fuzzy Problem) in the direction parallel to the surface surrounding gases. The kinetic theory for the ow of gas mixture is described by a linearized model of the Boltzmann equation, the McCormack model. To better describe the interaction between gas and wall is used by Maxwell kernel in the terms of a single accommodation coefficient and the Cercignani-Lampis kernel defined in terms of the coefficients of accommodation of tangential momentum accommodation coefficient and the kinetic energy corresponding to normal velocity, which according to literature is a more appropriate model than the usual model that involves specular and diffuse. In seeking solutions to the problem proposed, it uses a analytical version of the discrete ordinates method (ADO), based an arbitrary quadrature scheme, whereby it is determined a problem of eigenvalues and their constant separation. The numerical calculations are performed for three mixtures of noble gases: Neon-Argon, Helium-Argon and Helium-Xenon, and computationally implemented using the FORTRAN computer program.