Estudo da molhabilidade e superrepelência em duas dimensões usando modelo de Potts

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Lopes, Daisiane Molinos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Física
UFSM
Programa de Pós-Graduação em Física
Centro de Ciências Naturais e Exatas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/15111
Resumo: Our study to investigate the wettability of flat and structured surfaces in pillars based on two- dimensional simulations, using the Potts cellular model (CPM). We can find a superhydropic character on the surface when they presented: (I) High value of the contact angle (θ > 150°) formed between the liquid and the surface and (II)low hysteresis of the contact angle (Δθ< 10°). The drop on a surface may have two states of wettability: Cassie- Baxter, the liquid remains on the pillars surface, known as heterogeneous state or "fakir", and Wenzel, the liquid enters the cavities of the surface and is called state homogeneous. These studies show that between these two states there is an energy barrier that, when overcome, causes the transition of states. In our previous works, we also presented a model of at surface with a hydrophobic character, in order to obtain a surface with superhypophobic behavior (minimum contact between the drop and the surface). We studied which parameters can intensify this behavior and facilitate a possible transition. Thus, our structure of the surface with pillars and we vary the distance between them (b) and their height (h) to determine the transition zone of states. From the transition diagram, it was possible to analyze the behavior of parameters, such as contact angle, hysteresis and solid contact fraction in the regions near and far from the transition and also. We analyze how the parameters of the Potts model interfere in the wettability. In this study of the transition of states, we compared our model with the molecular dynamics model and therefore, having our results consistent with the experimental results found in the literature. Finally, we analyze how the reentrancy on the pillars influence the transition line.