Associação da via inflamatória e apoptótica na patofisiologia do acidente vascular encefálico tardio: relação com a dislipidemia

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Pascotini, Eduardo Tanuri
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Farmacologia
UFSM
Programa de Pós-Graduação em Farmacologia
Centro de Ciências da Saúde
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/17373
Resumo: Stroke occurs when blood flow to the brain is interrupted by an embolic or thrombotic occlusion of a cerebral artery (ischemic stroke) or by bleeding from a ruptured blood vessel (hemorrhagic stroke). Oxidative stress and brain inflammation are thought to contribute to the pathophysiology of cerebral injury in acute stroke, leading to apoptosis and cell death. Lipid accumulation may lead to progression of carotid plaques and inflammation, contributing to increased acute stroke risk. However, little is known about these events and markers in the late stroke (> 6 months) and if dyslipidemia could contribute to disease pathophysiology in a later phase. In this case-control study, we recruited stroke patients (n=40) and health subjects (control group; n=40). Dichlodihidrorofluorescin (DCFH), nitrite/nitrate (NOx), Tumor necrosis factor – alpha (TNF-α), Acetylcholinesterase (AChE), Caspase 8 (CASP 8), Caspase 3 (CASP 3) and Picogreen (PG) were measured in periphery blood samples. Furthermore, a correlation among all measured markers (DCFH, NOx, TNF-α, AChE, CASP 8, CASP 3 and PG) was realized. The markers levels were also compared to triglycerides (TG), total (CHO), LDL and HDL cholesterol levels and medications used. Statistical analyses showed that stroke patients presented an increase of DCFH, NOx, TNF-α and AChE levels when compared to control subjects. In addition, we observed that stroke patients had significantly higher CASP 8, CASP 3 and PG levels than control group. A significant correlation between TNF-α with CASP 8 (r = 0.4) and CASP 3 (r = 0.4) levels was observed, but not with oxidative/nitrosative markers. Moreover, we observed that stroke patients with dyslipidemia had significantly higher TNF-α, CASP 8 and CASP 3 levels than stroke without dyslipidemia and control groups. Our findings suggest that oxidative and inflammatory markers may be still increased and lead to caspases activation and DNA damage even after 6 months to cerebral injury. Furthermore, it is plausible to propose that dyslipidemia may contribute to worsen proinflammatory state in a later phase of stroke and an increased risk to new neurovascular events.