Produção, caracterização e viabilidade de micropartículas com Lactobacillus acidophilus obtidas por gelificação iônica
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
BR Ciência e Tecnologia dos Alimentos UFSM Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/5747 |
Resumo: | In the current work it was developed a technology for the production of probiotic microparticles where three formulations containing Lactobacillus acidophilus La-14 were prepared by external ionic gelation, using sodium alginate as the primary coating material, also adding to the capsule resistant starch (Hi-maize), and chitosan. The aim of this study was to evaluate the microcapsules in wet and dry form, analyzing the resistance of microorganisms to the drying process by freeze-drying, storage at room temperature (25° C), cooling (7° C), and freezing (-18° C) for 135 days for the wet microcapsules and 60 days for lyophilized microcapsules, and "in vitro" tolerance when inoculated in solutions of pHs simulating the human gastrointestinal tract, besides the morphology of the microcapsules by optical and electronical microscopy of scanning, as well as the average diameter. After the drying by freeze-drying there was significant logarithmic reduction for all treatments, indicating that for a better viability it is necessary the addition of a cryoprotectant agent. Regarding the viability assessed by the storage time for the wet microcapsules, the room temperature kept for 135 days the viability of the microcapsules, and the addition of prebiotic and chitosan in the capsule and improved significantly the viability. For freezing temperatures and cooling also showed better results for the treatments that contained the composition the addition of prebiotic and chitosan. Analyzing the lyophilized microcapsules, the temperature was more harmful to the viability of the microorganisms, and the temperature of refrigeration and freezing was viable for 60 days for the treatments with addition of prebiotic and chitosan. Regarding to the tests in vitro simulating the gastrointestinal conditions, both wet and lyophilized microcapsules were resistant to acid pH increasing their viability as increasing pH, whereas to the wet microcapsules the number of viable cells for all treatments was 106 log UFC/g, being within the required standards so that benefits occur exercised by the probiotics. In relation to the diameter, the wet microparticles had diameters less than 70.37 μm for both treatments, while lyophilized exhibited larger diameters in function of hydration and swelling. The microparticles developed in this study may be a viable alternative for obtaining a probiotic food product be incorporated into half, to allow a higher survival of the bacteria. |