A angiotensina II regula a esteroidogênese nas células da teca bovina?

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Rigo, Melânia Lazzari
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Medicina Veterinária
UFSM
Programa de Pós-Graduação em Medicina Veterinária
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
RAS
LH
Link de acesso: http://repositorio.ufsm.br/handle/1/10169
Resumo: Many studies have been developed to characterize the function of angiotensin-renin system (ARS) in the female reproductive organs. Evidences from the literature have pointed a relevant role of angiotensin II (Ang II) in mammals, through its type 2 receptor (AT2) in oocyte maturation as in ovulation. Nevertheless, the participation of Ang II in other important reproductive features such as steroidogenesis has not been fully clarified. Therefore, the main objective of this work was to detect in vitro the steroidogenic effects of Ang II in theca cells. For that, bovine theca cells were obtained from follicles (larger than 8mm of diameter) collected from a local abattoir and submitted to different treatments in a sequence of experiments. In Experiment 1, Ang II was added to LH-treated (10 ng/ml) theca cells. Experiment 2 employed Ang II, in different concentrations, in addition to insulin (100 ng ̸ml) and LH (100 ng ̸ml). Experiment 3 explored the effects of an Ang II antagonist (saralasin) in theca cells co-stimulated by insulin and LH (both at 100 ng ̸ml). After 24 hours, culture media were collected and evaluated for testosterone and androstenedione levels measured by high performance liquid chromatography (HPLC). In parallel, gene expression of key steroidogenic enzymes and proteins, respectively, HSD3B2, CYP11A1 e CYP17A1 and STAR were accessed by qRT-PCR, with exception of experiment 1, in which only CYP17A1 was evaluated. Overall, absence of Ang II action was observed in all Ang II doses evaluated. Despite the difference in gene expression for CYP17A1 against controls in experiment 1, neither an increase in androgens levels nor a negative impact of saralasin were detected. Although very important for oocyte maturation and the ovulation, Ang II seems not influence androgen production by theca cells in vitro. In conclusion our results do not support the role for Ang II in thecal steroidogenesis, at least in bovine, as the primary hypothesis of the study.