Injeção intracitoplasmática de espermatozoide: métodos de ativação oocitária e desestabilização da membrana espermática
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
Brasil Medicina Veterinária UFSM Programa de Pós-Graduação em Medicina Veterinária Centro de Ciências Rurais |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/11701 |
Resumo: | Development of bovine embryos produced by intracytoplasmic sperm injection (ICSI) is low compared to fertilized embryos. Deficient oocyte activation, inappropriate sperm capacitation, and lack of sperm decondensation are thought to be the main constrains affecting ICSI success in cattle. In the present study, activation compounds were tested to establish an effective protocol for activation of bovine oocytes, and then used for oocyte activation after ICSI. The activation approach consisted of exposing in vitro matured oocytes to Ionomycin (ION) following by a specific CDK1 inhibitor (RO-3306), a specific PKC activator (OAG) or both RO+OAG. In the first experiment, the rate of activation (pronuclear (PN) formation), cleavage, development to the blastocyst stage, and number of cells per blastocyst were evaluated after oocyte treatment. The PN rates were higher (P≤0.01) in the groups activated with ION+RO (48.5 %) and ION+RO+OAG (65.6 %) compared to ION (12.3 %) and ION+OAG (9.2 %). There was no significant effect between the RO concentrations tested (5, 7.5 and 10 μM) on oocyte activation. The PN rate was significantly higher (P≤0.01) when oocytes were exposed to RO for 240 min (84.6 %) compared to 60 (53.6 %) and 120 min (60.0 %). However, there was no difference between groups when treatment with RO started at 0, 30 or 60 min after on ION exposure. Cleavage rate was higher in ION+RO (70.2 %) and ION+RO+OAG (62.4 %) groups compared to ION (11.8 %) and ION+OAG (22.8 %). Blastocyst rate was also higher in the ION+RO+OAG (24.1 %) group, but not statistically different between ION+RO (19.7 %) and ION+OAG (9.5 %) groups. There was no development to the blastocyst stage after treatment with ION alone. The average cell number in blastocysts was not statistically different among treatments. In the second experiment, the effect of activation with ION+RO (10 μM for 240 min) was tested after ICSI using control (ICSI-Cont) or treated by electroporation (ICSI-El) sperm. Most oocytes presented a well-developed female PN (66.4%). Male PN formation was higher (P≤0.05) in the ICSI-El (33.3%) compared to the ICSI-Cont (9.4%) group. In conclusion, this study revealed that the specific inhibition of CDK1 after ION treatment is an effective approach to activate bovine oocytes. Male pronuclear formation after ICSI is increased by sperm electroporation, but is lower than female pronuclear formation. This indicates that deficient sperm decondensation and male PN formation rather than deficient oocyte activation is likely the main problem to develop an effective protocol for bovine ICSI. |