Teores no solo e espécies químicas na solução de P, Cu e Zn com adições sucessivas de dejetos líquidos de suínos
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
BR Agronomia UFSM Programa de Pós-Graduação em Ciência do Solo |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/5589 |
Resumo: | The distribution of pig slurry in agricultural areas, by presenting various elements in its composition, can over time, increase the levels of nutrients in the soil, as well as changing the distribution of chemical species in the soil solution. The study aimed to evaluate the levels of P, Cu and Zn total, available, soluble and the distribution of chemical species in solution, along the profile of a Hapludalf subject the application of 19 and 21 applications pig slurry and growing plants. The work was performed on soil columns of undisturbed soil, derived from an experiment conducted for 8 years in the experimental unit of the Federal University of Santa Maria (UFSM), Santa Maria (RS). The soil was a Typic Hapludalf, subjected to 0, 20, 40 and 80 m3 ha-1 of pig slurry applications. Soil samples were taken before and after the crops of black oat and corn in the greenhouse, in layers the 0-5, 5-10, 10-20, 20-30, 30-40 and 40-60 cm for the determining the levels of total P, Cu and Zn, available and extraction solution. In the solution were determined the concentration of the major cations, anions, dissolved organic carbon (DOC) and pH. The distribution of chemical species of P, Zn and Cu were obtained by computer program Visual Minteq. The 21 applications of pig slurry increased the levels of P, Cu and Zn total available and the solution in the surface layers with increasing doses. In addition to the increases in surface, successive applications of pig slurry increased the levels of depth, especially in larger doses, showing the migration of elements in the soil profile. High concentrations of soluble forms and available increase the risk of environmental contamination, promote transfers by both runoff and leaching, and increase the bioavailability and can cause toxicity of Cu and Zn to plants and microorganisms. The applications of pig slurry induced variations in the distribution of chemical species of P, Cu and Zn in soil solution, mainly in the surface layers, increasing the percentage of species of P complexed with Ca and Mg and reducing the proportion complexed with Al, these layers also increased the proportion of species of Cu and Zn complexed with organic and inorganic ligands, reducing the proportion of free species which are preferentially absorbed. The presence of plants leads to changes in the distribution of chemical species of P, Cu and Zn in soil solution, increasing the proportion of species of free P and reducing Cu and Zn. Thereby keeping soils under application of cultured pig slurry increases the proportion of P capable of absorbing and reduces risk of toxicity Cu and Zn. |