Detecção do estado de sonolência via um único canal de eletroencefalografia através da transformada wavelet discreta

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Silveira, Tiago da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Ciência da Computação
UFSM
Programa de Pós-Graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/5407
Resumo: Many fatal traffic accidents are caused by fatigued and drowsy drivers. In this context, automatic drowsiness detection devices are an alternative to minimize this issue. In this work, two new methodologies to drowsiness detection are presented, considering a signal obtained from a single electroencephalography channel: (i) drowsiness detection through best m-term approximation, applied to the wavelet expansion of the analysed signal; (ii) drowsiness detection through Mahalanobis distance with wavelet coefficients. The results of both methodologies are compared with a method which uses Mahalanobis distance and Fourier coefficients to drowsiness detection. All methodologies consider the medical evaluation of the brain signal, given by the hypnogram, as a reference.