Medição e simulação da temperatura e conteúdo de água em argissolo sob resíduos de aveia

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Zwirtes, Anderson Luiz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Ciência do Solo
Centro de Ciências Rurais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/13227
Resumo: This research was conducted with the objective of studying the dynamics of soil temperature and water content as a function of the different amounts of black oat residue (Avena sativa Schreb.) in the soil cover, through existing relationships with meteorological variables, as well as the simulation of these dynamics using Hydrus-1D. The experiment was carried out in an Argissolo Vermelho Distrófico arênico (Rhodic Paleudalf) in Santa Maria - RS. The treatments consisted of the use of 3, 6 and 9 Mg ha-1 of oat straw in soil cover and an uncovered soil treatment (0 Mg ha-1). Soil temperature and water content at different depths, in addition to meteorological conditions, were measured during the period from December 1, 2014 to December 6, 2015. The effect of straw on soil temperature was analyzed at different depths, correlating covered soil temperature with uncovered soil temperature. The equations used for estimating soil surface temperature were adjusted by the least square method, where the surface temperature is estimated as a function of air temperature and incident solar radiation, and its performance compared to the sinusoidal equation. The hydraulic and thermal parameters required for the simulation of soil temperature and water content were optimized by the reverse solution and validated on uncovered soils. The optimized parameters were used to simulate the temperature and water content in soils with different amounts of straw with two contour conditions for the soil surface temperature, one measure and the other estimated. The straw affected the soil temperature down to 50 cm deep. The uncovered soil temperature at which inversion of the straw effect occurred was 19.6 ° C at the surface and 15.8 ° C at 50 cm depth. The presence of straw keeps the soil warmer than the soil without straw at the beginning of the day, but prevents it from warming similar to the ground without straw for the rest of the day, causing in turn that, bare soil gets warmer during the day and cools more at night compared to the covered soil. This temperature was similar in all amounts of straw, but decreased in depth. The temperature of the soil surface can be estimated as a function of air temperature and solar radiation. In uncovered soil the proposed equation presents better performance compared to the sinusoidal equation. In covered soils the sinusoidal equation had better performance. The optimal hydraulic and thermal parameters of the soil improved the simulations of temperature and soil water content. The soil temperature with different amounts of oat straw can be simulated using Hydrus-1D, and the use of the contour condition with the measured surface temperature performed better than the estimated surface temperature.