Aumento do rendimento de módulos fotovoltaicos com aproveitamento da energia térmica para geração termoelétrica de estado sólido

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Vieira, Emanuel Antunes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/14061
Resumo: The Sun is the main source of energy of the Earth’s atmosphere-ocean-land system. The technological society is highly depended on the solar energy converted and stored in reservoirs, such as oceans, rivers, winds, plants, animals and fossil fuels. On the other hand, the direct conversion of the incident solar irradiance on electric power employing photovoltaic systems is a key component of the current energy matrix to fulfill our ever-growing energy needs. However, the efficiency of photovoltaic systems is dependent on the panel temperature. Here is shown that the thermal energy retained in photovoltaic panels can be employed to increase the overall system efficiency by converting directly thermal energy into electrical energy based on the thermoelectric effect (Seebeck effect). In order to demonstrate the feasibility of the system, it was designed and developed a proof-of-concept prototype of a solid-state photovoltaic and thermoelectric cogeneration system. The performance of the prototype was evaluated by comparing the experimental results and the theoretical expectations. Although the thermoelectric conversion process has a low profile, the system has a high degree of reliability and low maintenance requirements, high durability and no need for moving parts. The final results demonstrate that the efficiency of photovoltaic systems can be increased by employing thermoelectric energy recovery systems. It is expected that this study can be a starting point for more sophisticate evaluation of the energy potential of photovoltaic and thermoelectric cogeneration systems necessary for large-scale deployment in industrial power plants.