Programação paralela híbrida para CPU e GPU: uma avaliação do OPENACC frente a OPENMP e CUDA

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Sulzbach, Maurício
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Ciência da Computação
UFSM
Programa de Pós-Graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
CPU
GPU
Link de acesso: http://repositorio.ufsm.br/handle/1/5441
Resumo: As a consequence of the CPU and GPU's architectures advance, in the last years there was a raise of the number of parallel programming APIs for both devices. While OpenMP is used to make parallel programs for the CPU, CUDA and OpenACC are employed in the parallel processing in the GPU. In the programming for the GPU, CUDA presents a model based on functions that make the source code extensive and prone to errors, in addition to leading to low development productivity. OpenACC emerged aiming to solve these problems and to be an alternative to the utilization of CUDA. Similar to OpenMP, this API has policies that ease the development of parallel applications that run on the GPU only. To further increase performance and take advantage of the parallel aspects of both CPU and GPU, it is possible to develop hybrid algorithms that split the processing on the two devices. In that sense, the main objective of this work is to verify if the advantages that OpenACC introduces are also positively reflected on the hybrid programming using OpenMP, if compared to the OpenMP + CUDA model. A second objective of this work is to identify aspects of the two programming models that could limit the performance or on the applications' development. As a way to accomplish these goals, this work presents the development of three hybrid parallel algorithms that are based on the Rodinia's benchmark algorithms, namely, RNG, Hotspot and SRAD, using the hybrid models OpenMP + CUDA and OpenMP + OpenACC. In these algorithms, the CPU part of the code is programmed using OpenMP, while it's assigned for the CUDA and OpenACC the parallel processing on the GPU. After the execution of the hybrid algorithms, the performance, efficiency and the processing's splitting in each one of the devices were analyzed. It was verified, through the hybrid algorithms' runs, that, in the two proposed programming models it was possible to outperform the performance of a parallel application that runs on a single API and in only one of the devices. In addition to that, in the hybrid algorithms RNG and Hotspot, CUDA's performance was superior to that of OpenACC, while in the SRAD algorithm OpenACC was faster than CUDA.