Modelagem matemática para dosadores de fertilizantes por delineamento composto central rotacional
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
BR Engenharia Agrícola UFSM Programa de Pós-Graduação em Engenharia Agrícola |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/7592 |
Resumo: | The world population growth poses to modern agriculture a number of challenges, one of the main ones is the assurance of the food supply. For this, the rational and appropriate use of fertilizers that can provide increased productivity is required. Accordingly, a technology that can be used is Precision Agriculture, by applying to variable rates. To this end, electronic controllers, based on algorithms are used. However, these algorithms probably do not consider the effect of longitudinal and transverse inclination on the rate of fertilizer application. Aiming to enhance such algorithms, the present study aimed to develop mathematical models capable of predicting the rate of fertilizer application on the basis of longitudinal and transverse gradients and drive speed by of a central composite rotational design, which can be used as a tool to fix the rate of fertilizer application in precision agriculture. The experiments were performed at the Laboratory for Research and Development of Agricultural Machinery (Laserg), linked to the Federal University of Santa Maria. Five types of fertilizer metering mechanism of seed and fertilizer drills in lines and three types of fertilizers were used. Through central composite rotational design mathematical models were generated for each type of fertilizer metering mechanism and fertilizer, totaling fifteen models. With regression analysis, it was proven the efficiency of the models, simulations were performed to determine the minimum and maximum rates and the recommended operation parameters for each fertilizer metering mechanism and type of fertilizer. To determine the best parameters, the models were adjusted for the rate of speed and spacing. Then, the corresponding drive speeds to application rates of 200, 300, 400 and 500 kg ha-1 for longitudinal and transverse inclination zero were determined. The drive speed was fixed and longitudinal and transverse inclination was varied until values on which the application rate reached 5% variation. Graphs with intervals of longitudinal and transverse inclination from the values that caused the maximum permitted variations of 5% were developed, and by analyzing the graph area, the fertilizer metering mechanism were classified according to their performance and are considered more efficient ones with larger area. The efficiency of mathematical models generated from the central composite rotational design was proven, since their coefficients of determination, R ², were high and their relative and absolute errors low. The classification of the fertilizer metering mechanism as the best performance on the change in the rate of fertilizer application was: auger-type transverse discharge with overflow, auger-type with overflow and discharge to the side, auger-type with discharge by gravity, fluted cylinder and star wheel. |