Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Garcia, Anuska Conde Fagundes Soares
 |
Orientador(a): |
Romão, Luciane Pimenta Cruz |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Biotecnologia (RENORBIO-SE)
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/3278
|
Resumo: |
Polycyclic aromatic hydrocarbons (PAHs) are a class of fused-ring aromatic compounds that are ubiquitous environmental pollutants due to their toxic properties. The importance of preventing PAHs contamination has been recognized by the Unites States Environmental Protection Agency which has proposed 16 PAHs as priority pollutants, including fluoranthene. Biodegradation is considered as one of the major removal ways of these compounds. In this context, the search for new sources of natural microorganisms is extremely important. One of the most promising source is Peat, which consists in a organic soil formed through a complex process of decomposition and humification of plant residues by microbial oxidation. In addition to the huge biological and genetic pool which can be explored directly from this natural resource, biotechnologic applications using immobilized microbial cells is also an aspect that has gained importance due to various advantages. Thus, this study aims to investigate the biodegradation of in vitro fluoranteno using microorganisms isolated from Santo Amaro das Brotas peat-Sergipe, as well as, develop immobilized chitosan beads for the same purpose. Using this PAH as sole carbon source, it was possible to isolated 8 bacteria and 3 fungi identified as belonging to Bacillus sp., Serratia sp., Penicillium sp. and Fusarium sp. All strains were tested for their ability to degrade 100 mg L-1 of fluoranthene during different incubation periods: 5 and 10 days for bacteria, and 14 and 28 days for fungi. It was found that the duration of the incubation period was proportional to the degree of biodegradation. Analysis of metabolites enabled identification of three compounds common to all the microorganisms: 2,3-dimethyl-9H-fluoren-9-one, carbazole, and bis (octyl) benzene-1,2-dicarboxylate. In general, it was possible to observe the formation of aliphatic metabolites, probably showing a particular feature of these microorganisms from tropical peat. Regarding to microbial immobilization,the Serratia sp. AC-11 strain was selected for trapping in chitosan beads that were then used to biodegrade fluoranthene (at 100 mg L-1). The beads produced were uniform in size, with an average diameter of 3 mm, and were characterized by SEM and FTIR. The immobilized bacteria were able to degrade 76% of fluoranthene in 5 days and 84% in 10 days, at a degradation rate that was almost 50% higher than achieved using free-living cells. Furthermore, the beads with immobilized bacteria had the advantage of being reusable, with satisfactory biodegradation obtained during continuous cycles of use. The numbers of viable cells in the chitosan beads revealed the capacity of the strain to grow and multiply during the biodegradation process. The findings revealed that the peat environment could provide a useful source of PAH-degrading microorganisms.. The new bioproduct produced represents a low cost, efficient, eco-friendly, and practical solution for use in the bioremediation of areas contaminated by fluoranthene. |