Estudo do sistema Sr1-a-bAl2O4 : EuaDyb sinterizado a laser e a vácuo

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Sampaio, David Vieira lattes
Orientador(a): Silva, Ronaldo Santos da
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Sergipe
Programa de Pós-Graduação: Pós-Graduação em Física
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/handle/riufs/5241
Resumo: In the present work strontium aluminate powders (Sr1-a-bAl2O4:EuaDyb) with different dopant concentrations were prepared by Pechini’s method. All compositions presented the expected crystalline phase when calcined at 800ºC. Three distinct methodologies were employed to obtain the luminescent ceramics. The first one was the laser sintering method, where a CO2 laser is the heating source for sintering. Translucent ceramics were obtained using this sintering method, with 40% of transmittance in visible region. Even without controlling atmosphere, it was possible to reduce the Eu ion from valence III to II during this process, a necessary condition to achieve the persistent luminescence property in strontium aluminate. The other sintering method was vacuum sintering. This method didn’t provide well defined a microstructure, and presenting high porosity been opaque. Nevertheless, XANES results showed a more efficient reduction process in this case. A third methodology used was a vacuum treatment of previously laser-sintered ceramics. These samples presented a well-defined microstructure and high Eu reduction rate. Performing MEV, EDS and XANES measurements it was possible study the reduction process of Eu in the strontium aluminate and suggest some defect equations that describe this process. It was also observed that this reduction process depends on the Dy content and the used method. To characterize the luminescent properties of the samples were used photoluminescence and lifetime measurements. Two main influences were investigated: i) the sintering method; ii) the dopant concentration. The results showed that the photoluminescence is highly influenced by the Eu2+ concentration, and the persistent luminescence is more influenced by the Dy concentration. Finally it was created an illustrative scheme that describes the persistent luminescence in the strontioum aluminate.