Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Aragão, Maria Géssica dos Santos
 |
Orientador(a): |
Matos, Leonardo Nogueira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Ciência da Computação
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/3360
|
Resumo: |
Many applications of digital image processing uses object detection techniques. Detecting an object is usually related to locate the area around it, while shape detection is related to nd, precisely, the set of points that constitutes its shape. When the problem involves detecting shapes that have predictable changes, deformable models show to be an e ective solution. The approach developed in this work refers to the vehicle shape detection in frontal position by methods which are divided into two levels, the rst level is composed by a cascade of support vector machines and the second one is a deformable model. The use of deformable models favors the detection of vehicle shape same when its image is occluded by objects such as trees |