Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Santos, Irajan Moreira |
Orientador(a): |
Silva, Petrucio Barrozo da |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Pós-Graduação em Física
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://ri.ufs.br/jspui/handle/riufs/9116
|
Resumo: |
In this work, we analyze the structural, optical and electrical properties of thin films of ZnO - doped with aluminum (Al) and chromium (Cr), with concentrations of 3%, grown by non - reactive magnetron sputtering. The samples were grown using glass as substrates. For the production of the capacitors used in the electric characterization an Al layer was grown on the substrate which was used as the lower electrode. The films studied here were obtained by varying the thickness and temperature of the substrate, between ambient temperature and 400 ° C. The films obtained were characterized by X-ray diffraction (XRD), X-ray reflectometry (XRR), optical spectroscopy in the UV-Vis region, and IxV voltage current plotes. The results showed that the films produced have a large preferential orientation with planes (002) of the ZnO wurtzite hexagonal phase perpendicular to the surface of the substrate. By means of the XRR measurements, the experimental thicknesses were obtained as well as the roughness and mass density of the films. From the UV-Vis measurements, it was observed that the films have a high transmittance (above 80%) with a slight reduction with increasing thickness. The measurements of the IxV curves showed that the films have an ohmic behavior with a low resistance and resistivity, therefore possessing compatible properties to be used with conductive oxides and transparent for both dopants. The bandgap values for all films are close to 3.3 eV without significant variation with the parameters used. |