Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Mendonça, Edielma Costa
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Duque, José Gerivaldo dos Santos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Física
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/5329
|
Resumo: |
In this work, the effect of doping on structural and magnetic properties of cobalt ferrite nanoparticles was studied. Samples M1-xZnxFe2O4 series (M = Co, Mn and Ni) synthesized by hydrothermal method using different chelating agents and/or co-precipitation method presented changes in average size and particle size distribution, saturation magnetization, effective anisotropy constant and Curie temperature as a function of the chelating agent, type and amount of dopant. In general, CoFe2O4 samples synthesized by hydrothermal method with different chelating agents have average particle sizes reduced with respect to the samples synthesized by co-precipitation method. However, we show that the addition of these chelating agents may affect the analysis results of magnetization since the additional mass resulting from its decomposition is not discharged to carry out the measurements of magnetization. Moreover, the saturation magnetization, effective anisotropy constant and Curie temperature decreased with increasing zinc concentration. The saturation magnetization curve was evaluated from the MvsH measurements at room temperature using a Langevin fitting weighted by a log-normal distribution while the effective anisotropy constant was estimated by analyzing the magnetization in the high magnetic field region by using the expression M(H) = MS[1 - A/M - B/H2 - ...] + -H. Finally, hyperthermia measurements were performed on samples of cobalt-doped zinc ferrite at room temperature. In accordance with some results already reported in the literature, the best results were obtained for the intermediate concentrations. In this concentration range, the Curie temperature values, saturation magnetization and the effective anisotropy constant are considered optimal for the using in hyperthermia. |