Estudo teórico das propriedades estruturais, eletrônicas e ópticas dos compostos BaY2F8 e BaAl2O4

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Dantas, Jeânderson de Melo lattes
Orientador(a): Lalic, Milan lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Pós-Graduação em Física
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/handle/riufs/5283
Resumo: The first-principles calculations based on density functional theory (DFT) were employed to study structural, electronic and optical properties of the BaY2F8 and the BaAl2O4 compounds. As a computational tool it is used the FP-LAPW (Full Potential Linear Augmented Plane Wave) method, implemented into the WIEN2k computer code. The calculated lattice parameters and interatomic distances are found to be in a good agreement with experimental values, for both studied compounds. The band gap for the BaY2F8 (BYF) is calculated to be 7.5 eV. Analysis of the electronic structure reveals that the top of the valence band is dominated by the p-states of the F, while the conduction band bottom is primarily composed of the Y d-states. The optical answer of the material in the visible and ultraviolet range is determined by calculating its complex dielectric tensor. This way it was observed that the BYF crystal does not exhibit a large optical anisotropy. The material absorbs light mostly in the energy region between 7.5 and 12.5 eV due to electronic transitions between the populated p-states of the F and the empty states of the neighboring Y and Ba atoms. In the case of the BaAl2O4 the band gap was calculated to be the 4.9 eV by using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation potential, and 6.9 eV by using the new semi-local modified Becke-Johnson (mBJ) potential. The latter result is found to be in much closer correlation with the experimental findings. The top of the valence band is dominated by the O p-states, while the Ba d-states dominate the conduction band bottom. Analysis of the optical properties reveals that the BaAl2O4 exhibits a low optical anisotropy and that the PBE and mBJ calculations predict significantly different optical characteristics of the compound.