Influência do hipotireoidismo gestacional experimental no comportamento ingestivo e perfil metabólico da prole de ratas

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Gaujac, Danielle Pereira lattes
Orientador(a): Passos Júnior, Daniel Badauê lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Pós-Graduação em Ciências Fisiológicas
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://ri.ufs.br/handle/riufs/3965
Resumo: Recent experimental approaches attribute value to events occurring during intrauterine life as crucial in the onset of several diseases during postnatal life. Thyroid hormones (TH) are critical to the physiology of metabolism and body development. The aim of this study was to investigate the repercussions of lack of TH during pregnancy on body mass gain, metabolic profile, ingestive behavior of food, sodium (0.3M NaCl) and water in rat offspring at different postnatal ages. The experimental gestational hypothyroidism (EGH) was induced by the administration of 0.02% methimazole (MMI) in ad libitum drinking water from day 9 of gestation until delivery. Offspring (males and females) from MMI-treated dams (OMTD) were compared to their corresponding control offspring (i.e. male and female offspring from water-treated dams; OWTD). Insulin tolerance test (ITT) and glucose tolerance test (GTT) were also performed. Two- or three-way ANOVA followed by Bonferroni post-test were performed when necessary. OMTD showed lower body weight on PND 23 and 30 (p<0.0001). Similar profile was observed when the offspring were separated by gender, at least during the experimental period (PND 60, 90 and 120; p<0.0001 for both genders). However, there was no difference in the amount of food intake when males of OMTD (m-OMTD) were compared to OWTD (m-OWTD). Female of OMTD (f-OMTD) had lower ability to reduce glucose plasma level at ITT (p = 0.0224), otherwise, no change in GTT (p = 0.1313) was observed. At PND 60, glucose plasma level was higher in f-OMTD than in f-OWTD (p = 0.013). In m-OMTD, plasma cholesterol was higher in PND 60 and lower on PND 120 (p <0.0001), when compared to m-OWTD. In f-OMTD, cholesterol was lower only at PND 120 (p = 0.035). The high density lipoprotein (HDL) cholesterol was lower in OMTD on PND 15 and 30 (p = 0.04) and remained lower only in f-OMTD on PND 120 (p = 0.024). Moreover, EGH induced an increased in plasma triglycerides (TGL), as well as, in serum level of very low density lipoprotein (VLDL) cholesterol in offspring at DPN 15 (p = 0.039) and also after puberty (at DPN 60), but only the m-OMTD (p < 0.0001). The serum urea was lower in OMTD on PND 15 and 30. Interestingly, serum urea was inverted at DPN 60 in both, m- and f-OMTD (p = 0.006, and p = 0.003, respectively), when compared to their respective control groups. At PND 120, retroperitoneal fat weight was lower both in m- (p = 0.05) and f-OMTD (p = 0.009). Additionally, at all studied ages, relative kidney and liver mass was lower in m- (p = 0.001) and f-OMTD (p = 0.008). In conclusion, we demonstrated, for the first time, that maternal TH are critical to the ontogenetic development of systems that regulate energy metabolism throughout the life of the offspring, resulting in a reduction in body mass, biochemical instability throughout the life, lower sensitivity to insulin in females, and, a delay in the development of critical organs for the metabolism of macronutrients.